13 research outputs found

    Versal deformations of a Dirac type differential operator

    Full text link
    If we are given a smooth differential operator in the variable x∈R/2πZ,x\in {\mathbb R}/2\pi {\mathbb Z}, its normal form, as is well known, is the simplest form obtainable by means of the \mbox{Diff}(S^1)-group action on the space of all such operators. A versal deformation of this operator is a normal form for some parametric infinitesimal family including the operator. Our study is devoted to analysis of versal deformations of a Dirac type differential operator using the theory of induced \mbox{Diff}(S^1)-actions endowed with centrally extended Lie-Poisson brackets. After constructing a general expression for tranversal deformations of a Dirac type differential operator, we interpret it via the Lie-algebraic theory of induced \mbox{Diff}(S^1)-actions on a special Poisson manifold and determine its generic moment mapping. Using a Marsden-Weinstein reduction with respect to certain Casimir generated distributions, we describe a wide class of versally deformed Dirac type differential operators depending on complex parameters

    On recurrence and ergodicity for geodesic flows on noncompact periodic polygonal surfaces

    Get PDF
    We study the recurrence and ergodicity for the billiard on noncompact polygonal surfaces with a free, cocompact action of Z\Z or Z2\Z^2. In the Z\Z-periodic case, we establish criteria for recurrence. In the more difficult Z2\Z^2-periodic case, we establish some general results. For a particular family of Z2\Z^2-periodic polygonal surfaces, known in the physics literature as the wind-tree model, assuming certain restrictions of geometric nature, we obtain the ergodic decomposition of directional billiard dynamics for a dense, countable set of directions. This is a consequence of our results on the ergodicity of \ZZ-valued cocycles over irrational rotations.Comment: 48 pages, 12 figure

    Beyond Kinetic Relations

    Full text link
    We introduce the concept of kinetic equations representing a natural extension of the more conventional notion of a kinetic relation. Algebraic kinetic relations, widely used to model dynamics of dislocations, cracks and phase boundaries, link the instantaneous value of the velocity of a defect with an instantaneous value of the driving force. The new approach generalizes kinetic relations by implying a relation between the velocity and the driving force which is nonlocal in time. To make this relations explicit one needs to integrate the system of kinetic equations. We illustrate the difference between kinetic relation and kinetic equations by working out in full detail a prototypical model of an overdamped defect in a one-dimensional discrete lattice. We show that the minimal nonlocal kinetic description containing now an internal time scale is furnished by a system of two ordinary differential equations coupling the spatial location of defect with another internal parameter that describes configuration of the core region.Comment: Revised version, 33 pages, 9 figure

    Visualization of a hyperbolic structure in area preserving maps

    No full text
    Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal
    corecore